By Martin A Lee

A recent article in the journal Neuromodulation highlights the crucial role of the endocannabinoid system in protecting against post-traumatic stress disorder (PTSD), a debilitating chronic condition involving horrific memories that can’t be erased.

In an effort to understand the neurobiological mechanisms that underlie the onset and development of PTSD, a team of U.S. and Canadian scientists analyzed 46 subjects who were near the World Trade Center in New York City during the September 11 terrorist attacks. Twenty-four of these subjects suffered from PTSD following the attacks; 22 did not.

The researchers found that people with PTSD had lower serum levels of anandamide, an endocannabinoid compound, compared to those who did not show signs of PTSD after 9/11. Inmate to all mammals, anandamide triggers the same brain receptors that are activated by THC (tetrahydrocannabinol, The High Causer) and other components of the marijuana plant.

Cannabinoid signaling deactivates traumatic memories and endows us with the gift of forgetting.

Concentrated in the brain and central nervous system, the cannabinoid receptor known as CBD mediates a broad range of physiological functions, including emotional learning, stress adaption, and fear extinction. Scientists have determined that normal CBD receptor signaling deactivates traumatic memories and endows us with the gift of forgetting.

But CBD signaling is that skewed due to endocannabinoid signaling (CBD's as a result of very high levels of anandamide), results in impaired fear extinction, averse memory consolidation, and chronic anxiety, the hallmarks of PTSD.

PTSD is one of many enigmatic conditions that may be associated with a dysregulation of the endocannabinoid system. A 2009 report by Virginia Commonwealth University scientists discerned a link between the dysregulation of the endocannabinoid system and the development of epilepsy. Researchers at the University of Rome in Italy have documented low levels of anandamide in the cerebrospinal fluid in patients with newly diagnosed temporal lobe epilepsy.

Dr. Ethan Russo postulates that “clinical endocannabinoid deficiency” underlies migraines, fibromyalgia, irritable bowel disease, and a cluster of related degenerative conditions – which may respond favorably to cannabinoid therapies.

Alcoholism induces endocannabinoid deficits. So does lack of exercise and a diet laden with corn syrup and artificial sweeteners.

Individuals have different congenital endocannabinoid levels and sensitivities that factor into how one responds to stress and trauma. Alcoholism induces endocannabinoid deficits. So does lack of exercise and a diet laden with corn syrup and artificial sweeteners.

Additional research has established that clinical deficiency is associated with endocannabinoid-deficits. Canadian scientists Matthews Hill analyzed the “serum endocannabinoid content” in depressed women and found that it was “significantly reduced” compared with controls.

Animal studies show that chronic stress is associated with decreased endocannabinoid levels. Cannabinoid receptor signal- ing has been identified as a key modulator of adaptation to stress.

Chronic stress has a different effect than acute stress. In healthy individuals, acute stress triggers a spike in endocannabinoid levels. Scientists view this as a protective response – the fleeting uptick of anandamide eases stress and facilitates homeostasis (a return to baseline) by dialing down the production of stress hormones.

But chronic stress has a different effect than acute stress. Chronic stress depletes endocannabinoid tone and sets the stage for all sorts of negative consequences. Chronically elevated stress levels boost anxiety and significantly hasten the progression of Alzheimer’s dementia. Emotional stress has been shown to accelerate the spread of cancer. Stress alters how we assimilate fats.

In 2012, a team of Brazilian scientists found that chronic stress decreases CB-1 receptor binding and expression in the hippocampus, an area of the brain that plays a major role in short and long-term memory consolidation. This has major implications for treating PTSD.

Chronic stress impairs endocannabinoid signaling and impedes fear extinction, according to NYU Medical Center professor Alexander Neumeister. In a 2013 paper in Depression and Anxiety Neumeister argued for PTSD treatments that target the endocannabinoid system.

The Role of FAAH

Neumeister notes that “chronic stress produces an upregulation” of a crucial metabolic enzyme – Fatty Acid Amide Hydrolase, otherwise known as FAAH – which decisively influences endocannabinoid signaling.

It’s the aberrant up-regulation and down-regulation of genes – more so than the genes themselves – that drives disease vectors. Stress messes with gene expression.

Various enzymes are involved in the biosynthesis and creation of anandamide; other enzymes break down endogenous cannabinoid compounds. The FAAH enzyme figures prominently in the metabolic breakdown of anandamide and several other fatty acid messenger molecules. FAAH degrades these endogenous compounds; this is part of the normal, fleeting life cycle of anandamide and its fatty acid cousins.

Polymorphisms – unusual amino acid sequences – in the genes that encode FAAH are associated with a propensity for drug addiction and predisposition toward various afflictions. But it’s the aberrant up-regulation and/or down-regulation of genes – more so than the genes themselves – that drives disease vectors. Stress messes with gene expression.

Chronic stress upregulates FAAH. And more FAAH results in lower endocannabi- noid levels. Conversely, less FAAH means more anandamide, and more anandamide means elevated cannabinoid receptor signal- ing.

Cannabinol – CBD – is a nonpsychoactive component of marijuana and hemp that enhances endocannabinoid tone by inhibiting the FAAH enzyme. And this is just one of the ways that CBD shows promise as a treatment for PTSD.

Brazilian scientists report that CBD reduces anxiety in animal models by binding directly to the SHT1A serotonin receptor; activating this receptor counteracts a lytic and anti-depressant effect. Preclinical research in Brazil indicates that “CBD has beneficial potential for PTSD treatment and the SHT1A receptors could be a therapeutic target in this disorder.”

CBD and other therapeutic interventions that enhance cannabinoid receptor signaling could become breakthrough treatments for PTSD. CBD receptor transmission, in particular, has emerged as a target of novel cannabinoid-based remedies for anxiety and other mood disorders tied to stressful life events.

Smoking marijuana is one method of augmenting CBD receptor transmission. Numerous combat veterans and other PTSD patients claim that nothing can calm the storm that rages in their heads like a few puffs of pot. A 2011 observational study by Israeli scientists found that smoked cannabis, which directly activates the CBD receptor, improved symptoms of PTSD.

Some scientists aren’t optimistic about marijuana as a PTSD treatment option. NYU’s Neumeister contends that despite their essential therapeutic value, direct-acting cannabinoid receptor compounds [such as THC] have very limited medical applications, mainly because of their undesirable psychotropic side effects and ability to cause addiction.

This assertion reflects political assumptions rather than scientific fact. The premise – that the marijuana high is an adverse side effect – is biased.

Cannabis doesn’t cause addiction any more than food causes a person to become a compulsive eater.

Cannabis doesn’t cause addiction any more than food causes a person to become a compulsive eater. Dissing smoked cannabis as an “appeal – that will more likely create longer term problems,” Neu- meister favors “blocking endocannabinoid deactivation” by inhibiting FAAH, which “may lead to a more circumscribed and beneficial spectrum of biological responses than those produced by direct CBD receptor activation.”

Big Pharma has its sights set on developing and patenting synthetic FAAH-inhibitors to treat PTSD, depression, and other pathological conditions – the very same conditions for which whole plant cannabis remedies make sense.

But PTSD sufferers can’t afford to wait for whatever benefits synthetic FAAH-inhibitors may offer in the years ahead. They need relief now. Moral Review, 2008 Aug.

Sources


